

Preventing Web Scraping
Best Practice
October 2014

PREPARED BY

Paola Di Cretico
Creative Digital Ideas

Paola Di Cretico

2

Table of Content

1. Document Objective Pg. 3

2. Definition Pg. 3

3. Methodology Pg. 3

4. Best Practice Pg. 4

 4.1 Concurrent Login Pg. 4

 4.2 Source IP Address Changes Pg. 4

 4.3 Bot Traffic Analysis Pg. 5

 4.4 Rate Limiting Pg. 6

 4.5 Use of Cookies or JavaScript to verify clients program is standard Web Browser Pg. 7

 4.6 Implementing CAPTCHA Pg. 7

 4.7 Headless Browsers Pg. 8

 4.8 Converting data into Images Pg. 9

 4.9 Block Copying Pg. 9

 4.10 Block View Source Pg. 10

 4.11 Account management Pg. 10

 4.12 2-Step identity Verification Mechanisms Pg. 11

5. Issues on handling in-house scraping prevention Pg. 12

6. State of the art anti - scraping tools Pg. 12

3

1. Document Objective

The aim of this document is to outline the best practice to prevent and mitigate web

scraping

2. Definition

Web scraping, known as content scraping, data scraping, web harvesting, or web data

extraction, is a way of extracting data from websites, preferably using a program, or

bot (short for web robots) that sends a number of HTTP requests, emulating human

behavior, getting the responses and extracting the required data out of them.

Common methods to address web scraping attacks are:

» Session opening detects an anomaly when either too many sessions are opened
from an IP address or when the number of sessions exceeds a threshold from an IP
address. Also, session opening can detect an attack when the number of
inconsistencies or session resets exceeds the configured threshold within the
defined time period. This method also identifies as an attack an open session that
sends requests that do not include an ASM cookie.

» Bot detection investigates whether a web client source is human by limiting the
number of page changes allowed within a specified time.

» Session transactions anomaly captures sessions that request too much traffic,

compared to the average amount observed in the web application. This is based on
counting the transactions per session and comparing that to the average amount
observed in the web application.

3. Best Practice

Unfortunately, there is no efficient way to fully protect our website from data scraping.

This is so because data scraping programs (also called data scrapers or web scrapers)

obtain the same information as our regular web visitors.

It is impossible for traditional network security devices such firewalls, intrusion

detection and prevention, or even application layer firewalls to detect or block them as

sophisticated scraping tools mimic user search patterns, however there are developing

technical counter measures for detecting the practice.

Hence, to mitigate the risk of our site being scraped a combination of the following

measures should be implemented.

4

3.1 Concurrent Login (session opened)

Scrapers are more likely to open an unusually high number of concurrent connections

and access many more pages than most users.

It is recommended to add user capabilities that allow checking the details of active

sessions at any time, monitor and alert the user about concurrent logons, provide user

features to remotely terminate sessions manually, and track account activity history

(logbook) by recording multiple client details such as IP address, User-Agent, login

date and time, idle time, etc.

Proposed changes

All external users access should be limited to 2 concurrent login.

3.2 Source IP Address Changes

Scrapers are more likely to open an unusually high number of connections changing

frequently the IP addresses.

It is recommended to add user capabilities that allow tracking account activity history

(logbook) by recording multiple client details such as IP address, User-Agent, login

date and time, idle time, etc.

Recommended actions: implementing the following security controls for sessions
where the source IP address changes:

» Log source IP address changes during application sessions.
» Notify the user of potentially suspicious activity.
» Possibly require the user to re-authenticate to ensure the change is legitimate.

3.3 BOT Traffic

There are different web robot types:

» White bots (good) like search engines (Google, Bing and Baidu) help drive more

customers to the site and therefore increase revenue. They also help monitor the

site availability and performances (Akamai site analyzer, Keynote, Gomez) as well as

pro-actively look for vulnerabilities (Whitehat, Qualys)

» Black bots (bad) send additional traffic to the site that may impact its availability

and integrity. Bad bot traffic can drive customers away from the site, negatively

impacts revenue and the web site reputation. For example Hackers trying to bring

down a site with a DDoS attack or exposing / exploiting vulnerabilities. Competitors

or other actors scrapping a site to harvest pricing information to be used for

financial gains.

5

» Grey bots (neutral) don't necessarily help drive more customers to the site, nor do

they specifically seem to cause any arm. Their identity and intent is more difficult to

define, they usually present characteristics of a bot but are usually non aggressive.

Such traffic would only occasionally cause problem due to a sudden increase of the

request rate.

Identifying bot traffic

Dealing with bot traffic can be challenging and pro-active measures should be taken to

prevent any negative impact on the site. Monitoring bot activity is key. The one thing

that all bots have in common is that they only request base HTML pages, which usually

contain valuable information but are also more process intensive for the web server to

generate. Bots generally never request any of the embedded objects (images, JavaScript,

Cascaded style sheets) just because the client doesn't need to render the full page.

» White bot traffic is usually predictable. It will have a specific header signature

and will come from IPs belonging to the companies managing the bot. It is

possible to control what these bots can request on the site through robot.txt or

through the administration interface of the service managing the bot activity.

» Black bots header signature will widely vary from exactly mimicking a genuine

browser or search engine request to something that will present several

anomalies with missing headers or atypical headers being present in the request.

Black bots may also send requests at a higher rate.

» Grey bot traffic can be more challenging to identify since it generally present the

same characteristics as black bots.

Mitigating bot traffic

Once bot traffic is identified, the next step is to decide what to do with the black and

grey bot traffic. The type of action taken may vary depending on the business needs:

» Deny the traffic: this is the default but least elegant solution; client will receive a

HTTP 4xx or 5xx response code or a CAPTCHA. This will give the bot operator a

clear indication that such action is not allowed on the site and that they've been

identified by some security service or device. Bot operators could vary the

format of the request and see if they can stay under the radar.

» Serve alternate content: the content served could vary from a generic "site

unavailable" page to something that looks like a real response but only

containing generic data. This strategy may slow down the bot operator and keep

them in the dark as too why they cannot access to the data they want.

6

» Serve a cached / stale / static / version of the content: This is the best strategy

of all but not always necessarily possible to implement, some content just

cannot be cached or stored as static data on an alternate origin, because of

compliance concerns or its dynamic nature. It could potentially take the bot

operator some time to realize the data they are getting is worthless, an attacker

running a DDoS against the site would also get discourage and move on to a

different target.

3.4 Rate limiting

Advanced scraping utilities are very adept at mimicking normal browsing behavior but

most hastily written scripts are not. However, automated clients will expose themselves

by requesting Web content after a consistent time period. Bots will follow links and

make web requests at a much more frequent and consistent rate than normal human

users.

To rate limit an IP address means allowing the IP a certain amount of searches in a fixed

time frame before blocking it. This might be difficult to implement as many of our users

are likely to come through proxy or large corporate gateways which often share with

thousands of other users.

Solutions:

» Manually compile and maintain a white list, since IP addresses change over time.

(Hard to maintain)

» Investigate each “potential scraper” before blocking them.

Rate limiting technique usually work for a little while as most scrapers are used to

distribute themselves over a large number of accounts or IP addresses in order to avoid

detection.

3.5 Use Cookies or JavaScript to verify clients program is standard Web
browser

Simple scraping tools cannot process complex JavaScript code or store cookies. To verify

that the client is a real web browser, it is best practice to inject a complex JavaScript

calculation and determine is JavaScript is correctly computed.

This technique works well against normal bots, but not against advance scraping tools as

Connotate that have built-in JavaScript interpreter or any other scraping tools built on

Node.js (see headless browser section).

7

3.6 Implementing CAPTCHA

Completely Automated Public Turing Tests to Tell Computers and Humans Apart

(CAPTCHA) exists to ensure that user input has not been generated by a computer. This

has been the most common method deployed because it is simple to integrate and can

be effective, at least at first. It works with less advance scrapers who are not motivated

to alter their scraping tools and techniques.

There are two ways to circumventing CATCHA tests: 1) by using OCR (Optical Character

Recognition) software or 2) by employing labor in low cost countries to manually solve

them.

By using increasingly complex algorithms, programmers have managed to get a 5%

success rate at solving even the reCAPTCHA test which is one of the hardest CAPTCHA

challenges out there1. An interesting side effect of this may be that using a reCAPTCHA

test may significantly increase the scraping related traffic to our websites as they will

need 20 searches instead of one at a 5% success rate. Less effective programmers will

require more attempts.

The fact that CAPTCHA challenges can be circumvented is however not the primary

objective against using them, it is that they degrade the usability of a website. The

harder CAPTCHA challenges are troublesome even for humans to solve and used in the

wrong place on a website may significantly lower the visitor numbers.

There are ways of limiting these effects by using CAPTCHA in conjunction with other

means to detect scraping. The most basic example is to only send CAPTCHA tests to

clients making more than a certain number of requests; this will help most users of the

website including scrapers as they will not have to fill out as many CAPTCHA

tests. Another method is to send CAPTCHA challenges to IP addresses geographically

located in places where we normally do not have many visitors. Many websites are

country or language specific, and we can block off countries that normally harbor the

open proxies or anonymizing services that scrapers use.

All implementations of CAPTCHA tests naturally come with the challenge of keeping

whitelists up-to-date. Almost all websites have partners, friendly bots, and other

allowed automated users of the website.

The problem is that Captchas can be beaten with a little work and more importantly,

they are a nuisance to end users that can lead to a loss of business.

1
 Will a CAPTCHA test stop scraping? – Sentor Blog 15 January 2014.

8

3.7 Headless Browsers

A headless browser is a web browser without a graphical user interface. In other words

it is a browser, a piece of software, that access web pages but doesn’t show them to any

human being. They’re actually used to provide the content of web pages to other

programs.

The headless browser is significant because it understands web pages like a browser

would – with the caveat that browsers all behave slightly differently. Headless

browsers, for example, are able to parse JavaScript. They can click on links and even

cope with downloads.

Google: A proposal for making AJAX crawlable

Many headless browsers software are built on Node.js, a very powerful platform built

on Chrome’s JavaScript runtime.

Here's a list of crawlers you can get to deploy on Node.js

https://nodejsmodules.org/tags/spider

It is recommended to test our site scrapability to PhantomJS [phantomjs.org] which is a

scriptable headless WebKit with a JavaScript API to understand how much data can be

scrapped.

HTMLUnit

From Wikipedia: HtmlUnit is a headless web browser written in Java. It allows high-

level manipulation of websites from other Java code, including filling and

submitting forms and clicking hyperlinks. It also provides access to the structure and

the details within received web pages. HtmlUnit emulates parts of browser behavior

including the lower-level aspects of TCP/IP and HTTP.

A sequence such as getpage(url), getLinkWith(“Click here”), click(), allows a user to

navigate through hyperlink text and obtain web pages that include HTML, JavaScript,

Ajax and cookies. This headless browser can deal with HTTPS security, basic http

authentication, automatic page redirection and other HTTP headers; it allows Java test

code to examine returned pages either as text, an XTML DOM, or as a collection of forms,

tables and links.

The most common use of HtmlUnit is test automation of web pages, but sometimes it

can be used for web scraping, or downloading website content.

Version 2.0 includes many new enhancements such as a W3C DOM implementation, Java

5 features, better XPath support, and improved handling for incorrect HTML, in addition

to various JavaScript enhancements, while version 2.1 mainly focuses on tuning some

performance issues reported by users.

http://googlewebmastercentral.blogspot.com/2009/10/proposal-for-making-ajax-crawlable.html
https://nodejsmodules.org/tags/spider
http://phantomjs.org/
http://en.wikipedia.org/wiki/XPath

9

--

There is no way to prevent scrapers using this type of technology from scraping our site.

The best solution will be to implement an intelligent monitoring tool to detect and block

abnormal bot behavior.

3.8 Converting data into Images

Some scrapers will only access html files and ignore images and other binary files.

Advance scraping tools, such as Mozenda, gives clients the ability to store images as well

as html files. In addition, some well determined scrapers (using Django) can use OCR to

parse information out of the image.

Embedding content in an image or other media objects will probably slower the site for

the average user; not to mention all the extra time it takes to update the content on our

site.

Another way that would at least make scraping by bots harder (but still not prevent

people from taking screenshots) would be to save the images on our server in a

scrambled or encrypted form and then use some client-side logic (in Javascript for

example) to unscramble them.

 The downsides of this approach are that the clients will need to have the ability to do

the unscrambling technically and performance-wise in the first place and since the

unscrambling logic would run on the client, there is always the possibility for dedicated

people to reverse-engineer it.

Please note: Listing data as an image without a text alternate is in violation of the

Americans with Disabilities Act (ADA).

3.9 Block Copying

By disabling JavaScript and CSS style text can be blocked from being copied.

Many scrapers will use automated scraping tools that include an interpreter in the back

end that will read and copy the text.

Alternately, there are a number of Firefox application settings held in the prefs.js and

user.js files of Firefox’s package contents that can be easily viewed in the clients’

browser by typing about:config in the address bar.

Then, it is sufficient to modify the dom.event.clipboardevents.enabled preference by

changing its value from “true” to “false” to allow scrapers paste and copy the selected

content.

Hence, Block copying can be beaten with a little work and more importantly, they are a

nuisance to end users that can lead to a loss of business.

10

3.10 Block View Source

JavaScript Encryption is by far the most popular way to try to hide the source code.

It involves taking our code, using a custom made function to "encrypt" it somehow, and
then putting it in an HTML file along with a function that will decrypt it for the browser.

Many browsers provide alternative ways around this. Some allow users to save the page,

decrypted for easy viewing later. Others, like FireFox, include tools like the DOM

Inspector, which allows users to easily view and copy the XML of the page, decrypted.

Hence, Block View Source can be beaten with a little work and more importantly, they

are a nuisance to end users that can lead to a loss of business.

3.11 Account management

To mitigate web scraping vulnerability it is recommended to implement robust account

management architecture to enabling us to uniquely identifying our users. Currently, no

measures are in place to ensure registered users regularly update their profile

information. Users (especially self-registered) shall be prompted to update their profile

regularly.

Hard data stored in their profile, coupled with security questions might then be used to

uniquely identifying them.

Any security questions or identity information presented to users should ideally have
the following four characteristics:

» Memorable: If users can't remember their answers to their security questions,
you have achieved nothing.

» Consistent: The user's answers should not change over time. For instance, asking
"What is the name of your significant other?" may have a different answer 5 years
from now.

» Nearly universal: The security questions should apply to a wide an audience of
possible.

» Safe: The answers to security questions should not be something that is easily
guessed, or research (e.g., something that is matter of public record).

Best practice for security questions

» Display the security question(s) on a separate page only after your users have
successfully authenticated with their usernames / passwords (rather than only
after they have entered their username). In this manner, you at least do not allow
an adversary to view and research the security questions unless they also know
the user's current password.

11

» If you also use security questions to reset a user's password, then you should use
a different set of security questions for an additional means of authenticating.

» Security questions used for actual authentication purposes should regularly
expire much like passwords. Periodically make the user choose new security
questions and answers.

» If you use answers to security questions as a subsequent authentication
mechanism (say to enter a more sensitive area of your web site), make sure that
you keep the session idle time out very low...say less than 5 minutes or so, or that
you also require the user to first re-authenticate with their password and then
immediately after answer the security question(s).

4.11 2- Step Identity Verification Mechanisms

To mitigate web scraping vulnerability it is recommended to implement an extra layer
of security on registration/login that in turn will enable us to uniquely identify our end
users.

Multi-factor authentication (MFA) is using more than one authentication factor to
logon or process a transaction:

 Something you know (account details or passwords)
 Something you have (tokens or mobile phones)
 Something you are (biometrics)

Authentication schemes such as One Time Passwords (OTP) implemented using a
hardware token can also be key in fighting attacks such as CSRF and client-side
malware. A number of hardware tokens suitable for MFA are available in the market
that allow good integration with web application.

Two-step verification is a process involving two subsequent but dependent stages to

check the identity of an entity trying to access services in a computer or in a network

with just one factor or secret, whilst there is no proof obtained that the bearer of the

unit is identical to the owner of the unit.

2-level identity verification mechanism adds an extra layer of security to users account,

drastically reducing the chances of having personal information stolen and unlawful

access to your site.

It is best practice to deploy a Mobile app (or SMS) identity verification step to identity

the users.

4. Issues on handling scraping prevention in-house

To be able to mitigate scraping issues in-house we need:

12

» Development resource to continuously develop our countermeasures as

scrapers will try and get around them.

» Analysis resources to analyse performance of the solution and suggest changes

to dev.

» Architects to design the solution and keep up with what is happening around

the internet to make sure the solution keeps working and do what it does.

It is important to emphasis that the resources will need to be committed on an ongoing

basis.

5. State of the art anti-scraping tools

SENTOR
http://www.scrapesentry.com/

FIREBLADE

http://www.fireblade.com/

CLAREITY SECURITY

http://clareitysecurity.com/

http://www.scrapesentry.com/
http://www.fireblade.com/
http://clareitysecurity.com/

